Viral Clearance/Adventitious Agent Testing/Column Reuse

September 5, 2001

BLA STN# 125029 file

Rona LeBlanc, Ph.D., DTP

Date:

From:

To:

	4.	
	5.	
C.		
	1.	
	2.	
	3.	
	4.	
	5.	
D.		
	1.	
	2.	
	3.	
	4.	
	5.	
E.		
	1.	
	2.	
	3.	
	3.	
F.	3. 4.	
F.	3. 4. 5.	
F.	3. 4. 5. 	
F.	3. 4. 5. 1. 2.	
	3. 4. 5. 1. 2. 3.	
F. G. H.	3. 4. 5. 1. 2. 3.	
G.	3. 4. 5. 1. 2. 3.	

VI. Action Items

I. Rationale and Background:

The Protein C pathway regulates the inhibition of blood coagulation by limiting thrombin formation resulting in decreased fibrin deposition. The ability of APC to limit thrombin formation through inactivation of Factor Va and Factor VIIIa is the basis for APCs antithrombotic function.

Plasma-derived APC has been shown to have profibrinolytic effects thought to result indirectly from APC's effect on two components of the fibrinolytic

pathway (inhibition of plasminogen activator inhibitor-1 (PAI-1) and inhibition of activation of thrombin activatable fibrinolysis inhibitor (TAFI; also referred to as procarboxypetidase B). APC is thought to indirectly inhibit activation of TAFI by virtue of its ability to inhibit thrombin generation.

Thrombin has been shown to be a potent mediator of several inflammatory processes. Thrombin upregulates the expression of P-selectin on endothelial cells, facilitating neutrophil adhesion and activation. Thrombin itself is chemotactic for neutrophils, and also causes the expression of platelet activating factor, a potent neutrophil activator (Esmon 1998). Through its antithrombotic properties, rhAPC may indirectly mitigate these inflammatory pathways by inhibiting the generation of thrombin. Several in vitro studies suggest that rhAPC may also interfere directly with inflammatory pathways in mechanisms both dependent and independent of its enzymatic activities.

Another possible mechanism for rhAPC's role in the reduction of the inflammatory response is suggested in studies performed by Grinnell et al. 1994. In an effect independent of its serine protease activity, plasma-derived APC or recombinant human Protein C inhibited in vitro E-selectin-mediated cell adhesion, an event critical for the recruitment of neutrophils following an inflammatory response.

Recombinant human Activated Protein C is intended for use as a therapeutic for patients with severe sepsis defined as sepsis associated with organ dysfunction which has developed in the context of infection.

Recent evidence indicates that the systemic response to infection includes not only an inflammatory component, but also a procoagulant response. Proinflammatory cytokines, including TNF- α ?IL-1, and IL-6, are capable of activating coagulation and inhibiting fibrinolysis, while the procoagulant thrombin is capable of stimulating multiple inflammatory pathways. As sepsis progresses, the imbalance between coagulation and fibrinolysis manifests as coagulopathy and microvascular thrombosis and may ultimately be a primary factor in the development of multiple organ failure. Reported mortality rates for patients with severe sepsis range between 30% and 60%. Activated Protein C, with its known mechanisms of action, may play a key role in modulating the intensive hemostasis and inflammatory host response to infection. Current therapy for severe sepsis includes appropriate antimicrobial treatment, source control of the infection (eq. surgical debridment of necrotic tissue), volume resuscitation, cardiopulmonary support and support for other failing organs. However, no therapy specifically targets the inflammatory and procoagulant host response to the infection that results in the development of multiple organ dysfunction.

The sponsor claims that rhAPC would be the first specific compound shown to reduce 28-day all-cause mortality in patients with severe sepsis.

II. Characterization of the Cell Substrate for -----production

A. Origin and History of the Parental Cell Line

human Protein C (neration of the production ce -) was derived from the		
expression vectors were in The cell	The humanparent cell line troduced, is aline was isolated in	line of primary human	
cloning and sequencing of	the cellular-viral junctions hathe fragment	An analysis by as revealed that the	
	, or approximately	This	
	Master Cell Bank (MCB) & [
Methods	Call Danks (MCD) and Mari	king Call Danks (MCD)	
different sets of Master Cell Banks (MCB) and Working Cell Banks (WCB) have been prepared, the set (
590). <u>Test</u>	<u>Method</u>	Results	
Identity		Enzymes were consistent with cells of human origin. Also human karyology observed.	
Retroviruses,		No virus or virus-like	
adventitious agents		particles seen	

Retroviruses,	 Negative
Sterility	 Negative
Mycoplasma	 Negative
Adventitious agents,	

Commercial MCB: The tests performed on -----, MCB are listed below. An explanation of the methods follows.

Taken from Table I.C.8 on page 314 (identical to Table I.D.64, pages 594).

<u>Test</u>	<u>Method</u>	<u>Results</u>
Identity		Consistent with cells of
		human origin.
Bacterial/Fungal		Negative
Contamination		
Mycoplasma		Negative
Retroviruses,		No identifiable retroviral-
adventitious agents		like particle
Adventitious agents,		Negative

Comments: Appropriate testing was done on the MCB as per ICH Q5A. This provides added assurance of safety and reproducibility. The MCB was of human origin and was free of endogenous and adventitious agents. Thus, the characterization of the MCB is acceptable.

Test Methods

Cell Line Identification and Characterization ()
: Description of Cells and Detection of Viruses and Retroviruses
<u></u>

THESE 8 PAGES

DETERMINED NOT

TO BE

RELEASABLE

A. Characterization of the	e Working Cell Bank (WCB)		
7. Gridiadionization of th	o troming con bank (trob)		
The tests performed and th	ne results are listed below.	Test methods were the	
same as those used above			
	pages (identical to Ta	able I.D.60. pages 587-	
590).	(mero ile roo, poigeo cor	
Test	Method	Results	
Identity		Enzymes were consistent	
		with cells of human	
		origin. Also human	
		karyology observed.	
Retroviruses,		No virus or virus-like	
adventitious agents		particles seen	
Retroviruses,		Negative	
		9	
Sterility (Bacterial/Fungal		Negative	
Contaminants)		. roga ro	
Mycoplasma		Negative	
,		9	
Adventitious agents,		Negative	
		9	

Taken from Table I.C.8 on page 314 (identical to Table I.D.64, pages 594). WCB

Test

Method

Results

Identity	 Consistent with cells of
	human origin.
Bacterial/Fungal	 Negative
Contamination	
Mycoplasma	 Negative
Retroviruses,	 No identifiable retroviral-
adventitious agents	like particle
Adventitious agents,	 Negative
	 Negative
Retroviruses	
/	
D	
	 <u>Results</u>
	Results

THIS PAGE

DETERMINED NOT

TO BE

RELEASABLE

- III. Adventitious Agent Screening During Manufacture
- A. Animal-derived Raw Materials

1.	was obtained from BSE-free herds in the United States or New Zealand. This is used in preparation of the MCB, WCB and consistency lots. The Certificates of Analysis are located on pages 138 and 188. Bovine virus testing performed was per 9CFR 113.53 and included
2.	Tests for
3.	Bovine was obtained from herds in the United States or New Zealand. It is used in the
charac	ellowing is a description of the assays that were used to test and exterize the animal sourced raw materials (Pages 655-656, section I.D.3). s of the actual reports are provided in Section I.I.1, Viral Safety Reports.
	 .

Comments: The raw materials of animal origin were appropriately tested for viral contamination. B. Drug Substance Consistency Run (unprocessed bulk; bioreactor harvest) Unprocessed bioreactor solutions are obtained at the end of a production run from eachliter bioreactor. Lots tested were			
<u>Test</u>	<u>Method</u>	Acceptance Limits	
The following is a description of the assays that were used to test unprocessed bulk harvest at the end of bioreactor run (Pages 656-657, section I.D.3). Copies of the actual reports are provided in Section I.I.1, Viral Safety Reports.			
·			
			

<u>Comments:</u> The harvest materials have been appropriately tested for adventitious agents. The routine in-process testing scheduled during manufacture should be sufficient to detect most potential contaminants.
IV. Summary of Adventitious Agent Testing in Cell Banks and During Manufacture
A. The characterization of the MCB, WCB, and is acceptable and provides added assurance of safety.
B. The animal-derived raw materials were tested as per 9 CFR 113 to provide added assurance of safety. The tests were acceptable.
Cconsistency lots were tested for adventitious agents and the routine in- process testing should be sufficient to detect most potential contaminants.
V. Viral Clearance Studies
Studies to measure both the robustness and clearance of retroviruses in particular were done using a scaled-down process using the model viruses listed below. Both new and used column resins were tested. The

THESE 8 PAGES

DETERMINED NOT

TO BE

RELEASABLE

			cycles)
	-		
1.			
		1 st run	2 nd run
2.			
Comm	nents:		
	<u>1st run</u>	2 nd run	
	<u> </u>		
	:		
	•		
Su	mmary of Virus Clearance:		
. . .	initially of viruo olouranoo.		
	independent studies were don	e for all the stens	involved (
	independent studies were don't		
	n resins were tested and show si		
	can be used times,		
	earance studies were done at		
11000	l viruses covering different physic	prop	erries (). Indicator
			<i> j</i> . indicator

d ir m	one in repnactivation nechanism ddition,	olicates. Cythin studies on of clearand	assays were a totoxicity and increase and increase are totoxicity are totoxicity and increase are totoxicity and increase are totoxicity and increase are totoxicity are totoxicity and increase are totoxicity and increase are totoxicity and increase are totoxicity are	nterference as Als vs. removal) f	says were do so, the spons or some of th	one, as were or stated the ne steps. In	
	Cumula om appro	ative log 10 re	eduction values				
` S	Overall ingle-use	, the assays 	used were acc freedom from a	wa	as sufficiently		ns
Η	l		Solution	Inactivation St	tudies		
	<u>Virus</u>	Titer	Log ₁₀ Red	<u>luction</u>			
_		T=	<u>Log₁₀ Red</u> T=	T=	T=	T=	i I
							Ì
F							ì
							Ì
ŀ							İ
							İ
ľ							1
							1
							1
							i

:								
<u>Virus</u>	Titer T=	<u>Log₁₀ Redu</u> T=	ıction T=					
Comments: The viruses () were reduced by at least logs on contact with the solution was reduced by at least logs within 15 minutes. The cleaning solution used would help to reduce carryover of viruses to the next batch, and reduce potential virus in downstream processing. Virus remaining on the columns should be inactivated prior to column reuse. *Note: In the summary tables, the sponsor incorrectly averaged the reduction values of all time points for a given virus per experiment. Then, the values of both experiments per virus were averaged. That method of calculation does not give a clear picture of inactivation over time. An inactivation curve is needed. Thus, I went to the study reports for the actual results per time point per experiment.								
2. []			
<u>Virus</u>	 Titer T=	<u>Log₁₀ Redu</u> T=	<u>uction</u> T=	T=	T=			
	· 	· 	·					
<u> </u>	· 			l				

	-	

Second Experiment:

<u>Virus</u>	Titer	Log ₁₀ Reduction	
	T=	T=	T=

 •		
=		

<u>Comments:</u> The viruses tested (------) were reduced by over -- logs upon contact with the solution. ------ was reduced by at least -- logs within 15 minutes. The cleaning solution used would help to reduce carryover of viruses to the next batch, and reduce potential virus in downstream processing. Virus remaining on the columns should be inactivated prior to column reuse.

*Note: In the summary tables, the sponsor incorrectly averaged the reduction values of all time points for a given virus per experiment. Then, the values of both experiments per virus were averaged. That method of calculation does not give a clear picture of inactivation over time. An inactivation curve is needed. Thus, I went to the study reports for the actual results per time point per experiment.

VI. Action Items/Comments to Sponsor None.